A importância da boa ventilação
Antes, durante e depois de uma pandemia global.
Desde o início da pandemia global COVID-19, tem havido um consenso internacional sobre medidas para reduzir a transmissão do vírus: distanciamento social, higienização das mãos e uso de máscara. Essas medidas são consequência das vias de contágio aceitas: contaminação por inalação de gotículas e por contato direto com superfícies contaminadas. No entanto, existe um número crescente de cenários de contágio onde a transmissão não pode ser explicada pelos mecanismos mencionados acima, mas sim por transmissão por sprays em aerossol. Nesse sentido, as diferentes autoridades sanitárias começaram a aceitar a referida transmissão como uma via muito provável de contágio – de acordo com a bibliografia mais recente e, portanto, a ventilação também foi incluída como medida fundamental de redução da transmissão. Este fato foi introduzido na sociedade um intenso debate sobre a maior comodidade da ventilação natural ou de ventilação mecânica. Ventilação natural (considerada neste estudo como janelas abertas) apresenta a aparente vantagem de um suposto custo zero, em detrimento de sacrificar o impacto sobre a eficiência energética (e esquecer as compensações organizações internacionais de combate às mudanças climáticas), conforto térmico das pessoas, a elevada presença de poluentes no ar em ambientes urbanos e a falta de controle de sua operação real.
Apesar disso, o presente estudo se concentra em comparar os dois tipos de ventilação, apenas em termos de sua eficácia na redução da probabilidade de infecção por sprays em aerossol. No nível de ventilação natural, o fluxo de renovação gerado é simulado abertura de janelas e ventilação mecânica o fluxo de renovação estipulado pelo Regulamento das Instalações Térmicas em Edifícios (RITE).
Neste estudo, três cenários possíveis de contágio são analisados: uma escola, um bar / restaurante e escritório, com respetivas densidades de ocupação e características do evento (tempo de exposição, taxas de fluxo respiratório, etc.) semelhante a situações reais. Relacionar a concentração de aerossóis no ambiente com as probabilidades de infecção, o modelo Wells-Riley é usado. As concentrações de partículas infecciosas, bem como as probabilidades de infecção dependendo das taxas de fluxo de renovação para diferentes tempos de exposição.
Embora seja verdade que para obter uma menor probabilidade de infecção, seria necessário aumentar as taxas de fluxo acima do indicado pelo RITE (um regulamento que não é calculado levando em consideração um evento de contágio de aerossol), conclui-se que o fluxo de renovação associado à ventilação mecânica, atendendo ao RITE, consegue reduzir até mais de três vezes o risco de infecção em comparação com a ventilação natural (abra a janela).
INTRODUÇÃO
Em 31 de dezembro de 2019, a Organização Mundial da Saúde (OMS) foi notificada sobre uma série de casos de pneumonia viral em Wuhan. Em 9 de janeiro de 2020, é determinado que o surto é causado por um novo coronavírus (SARS-CoV-2). Eu sei rapidamente as primeiras reuniões foram convocadas para analisar este novo vírus e no dia 11 de janeiro, obter a sequência genética disso. Primeiro houve dúvida sobre a possível transmissão do vírus entre humanos, mas em 21 de janeiro ele pôde ser confirmado. No entanto, não é até em 11 de março que a OMS declarou o início da pandemia.
A princípio a OMS sugere distanciamento social, uso de máscaras e lavagens mãos como as melhores ferramentas para combater o vírus, uma vez que o mecanismo considerado pela OMS como o método de transmissão do vírus é o contato direto das membranas mucosas do nariz, olhos ou boca com as gotas / partículas infectadas. Essas partículas podem vir de:
- Partículas emitidas ao falar, respirar ou espirrar. Assim parece a transmissão através dessas gotículas é improvável em distâncias maiores que dois metros.
- Superfícies contaminadas por essas gotas, que acabam em nossas membranas mucosas por contato direto. Para este caso, é estudado o tempo que o vírus pode sobreviver em diferentes materiais.
Portanto, no início, todos os Estados optaram por essas medidas para amenizar a alta transmissibilidade do vírus. No entanto, em pouco tempo, muitos cientistas começam a alertar sobre a possibilidade de transmissão do vírus por meio de aerossóis. Aerossóis são partículas menores do que as mencionadas acima, que não caem tanto rapidamente e permanecem flutuando no ambiente por muito tempo.
Esses aerossóis são rapidamente distribuídos por todas as salas e, como as gotas já mencionado acima, os aerossóis também podem transportar cargas virais. Diferentes estudos detectaram a presença de SARS-CoV-2 em aerossóis. A importância deste método de transmissão é visualizada considerando que uma pessoa adulta respira em média entre 18.000 e 20.000 vezes ao dia, respirando (e filtrando) cerca de 8.000 litros de ar por dia, durante que grande quantidade de aerossóis presentes no ambiente são inalados.
A importância da transmissão do aerossol adquire maior relevância a partir do estudo de vários eventos onde os mecanismos de transmissão descritos e aceitos pela OMS não permitiram explicar o elevado número de infecções derivadas dos referidos eventos.
Destes tipos de eventos, Prof. José L. Jiménez da Universidade do Colorado desenvolveu um modelo para estimar a transmissão de COVID-19 por aerossóis. Prof. Jiménez e muitos outros cientistas vêm tentando há muito tempo aumentar a conscientização autoridades sobre a importância da transmissão do vírus por aerossóis. Finalmente, a OMS incluiu aerossóis como método de transmissão de COVID-19 em situações específicas em outubro passado.
Está além do escopo deste artigo aprofundar-se em todos os métodos de transmissão, focando exclusivamente na importância dos aerossóis como método transmissão que nem a distância social nem a lavagem das mãos podem impedir.
Este artigo parte da análise do modelo exposto na ferramenta Aerossol Estimador de transmissão do Prof. Jiménez, ao qual novos são adicionados funcionalidades e implementadas em Python para máxima flexibilidade em quanto aos estudos de caso e a visualização dos resultados. O objetivo é duplo: primeiro, analise o risco de contágio se houver uma pessoa infectada em uma sala conhecida (volume, número de trocas de ar, número de pessoas …); segundo poder dimensionar corretamente a ventilação das salas dependendo do tipo de evento que hospedam e a duração.
Dessa forma, buscar-se-á responder à pergunta: a ventilação natural é suficiente? (Entendido como abrir janelas)? Ou é necessário forçar a ventilação com a ajuda de um sistema de ventilação? Por outro lado, é suficiente ventilar seguindo os requisitos regulamentos atuais? Para fazer isso, três exemplos diferentes serão analisados (uma sala de aula de uma sala escola, um pequeno bar / restaurante e uma sala de escritório).
O presente trabalho visa, por um lado, sensibilizar todos os usuários e administrações públicas da importância da ventilação correta sempre: antes, durante e após uma pandemia global e, em segundo lugar, para validar se o quadro regulatório corrente, bem aplicada, é suficiente para reduzir a níveis aceitáveis a possibilidade de contágio por aerossóis.
- ESTUDOS DE CASO
Várias configurações diferentes serão analisadas para cada caso (sala de aula, bar / restaurante e escritório). Mas olhando para o ar, mudanças serão feitas:
- Ventilação natural: um fluxo de ventilação natural equivalente a 0,75 é assumido mudanças de ar por hora. A ventilação natural pode variar muito dependendo das condições externas. Portanto, o valor escolhido é apenas uma referência para poder analisar uma configuração com ventilação natural. Tem sido considerada ventilação natural às recomendações oficiais para abertura de janelas.
- Ventilação definida por RITE.
- Ventilação necessária para reduzir a probabilidade de infecção para 1%.
Os casos apresentados a seguir são um resumo daqueles apresentados no estudo “A importância de uma boa ventilação: antes, durante e depois de uma pandemia global “, escrito por Albert J. Diaz Carrasquer e Jordi Lanuza Fabregat, Ingenieros CFD del Laboratório de aerodinâmica e acústica do S&P Ventilation Group.
3.1. AULA
Um dos casos interessantes para estudar é o de uma escola. Para isso você leva uma sala de aula medindo 8 x 8 x 3m com 24 alunos e um professor, que é considerado infectado, onde todos eles usam uma máscara. Para recriar os tempos de ocupação das salas de aula, presume-se que 2 horas de aula sejam ministradas pela manhã, seguidas por 30 minutos de recesso e mais 2 horas de aula. Isso é seguido por um intervalo de 2 horas para o almoço após o qual as aulas são retomadas por mais 2 horas. Cabe mencionar que, para os intervalos em que a sala de aula é esvaziada, a concentração de doses infecciosas no ambiente é progressivamente reduzida, pois não há novas contribuições.
Pode-se concluir também que, cumprindo no mínimo as renovações horárias (ACH) recomendado pela RITE, é possível eliminar praticamente todos os vírus nas pausas estabelecidas, ao passo que isso não é possível apenas com ventilação natural.
Uma vez analisada a concentração de doses infecciosas no meio ambiente, passamos a calcular a probabilidade cumulativa de infecção com base nas renovações de hora em hora acessível.
Para o caso de ventilação natural, a probabilidade de infecção é de aproximadamente 6%, o que significa que um aluno seria infectado no final do dia letivo. Para o caso de renovações por hora indicadas no RITE, com as quais uma probabilidade de contágio três vezes menor do que com ventilação natural (abertura janelas), e para aqueles que correspondem a uma probabilidade de 1%, não contágio entre os alunos.
Porém, com a hipótese de que a professora permaneceu 4 dias em sala de aula sendo infeccioso (hipótese razoável dado o tempo que leva para manifestar os sintomas): com ventilação natural, a probabilidade cumulativa seria de 21%; com as reformas por hora estabelecida pelo RITE, a probabilidade é de aproximadamente 7%, enquanto para o número de renovações por hora correspondente ao a probabilidade de 1% seria 4%. Se o número de alunos for recalculado infectado após 4 dias desenvolveria 5, 2 e 1 infecções, respectivamente.
Se for considerado o caso sem ventilação, considerando apenas os possíveis vazamentos (já foi contado como 0,2 ACH), verifica-se que o risco de infecção diária aumenta para 7,8%. Isso implica que no final do dia 2 alunos estariam infectados e, após 4 dias, 7 alunos.
Outro caso interessante para estudar é o de um aluno infectado. Neste caso, devido a que a quantidade de quanta exalada pelo aluno será da ordem da metade, as chances de infecção também serão. Se o número de alunos for considerado infectados no final do dia, eles vão acabar infectando 1 e 0 alunos, respectivamente, para a mala com ventilação natural e com a ventilação marcada pelo RITE. Se o número de infecções antes que o aluno manifeste os sintomas (4 dias) seria 2 e 1.
Finalmente, foi considerado adicionar um caso replicando as recomendações institucional publicado após a onda de frio. É aconselhável aplicar uma estratégia de “Ventilação intermitente”, em que as janelas são abertas por 10 minutos no final de cada hora. Assim, as seções definidas para este caso foram modificadas para satisfazer a sequência de 50 minutos de janelas fechadas e 10 minutos de janelas abertas, considerando que nas seções onde a sala de aula está desocupada (café da manhã e almoço), as janelas são mantidas abertas o tempo todo. No caso de janelas fechadas, um fluxo de renovação equivalente a possíveis vazamentos na sala de aula foi considerado. 0,2 ACH, enquanto, com as janelas abertas, uma taxa de fluxo de 8 ACH foi considerada.
Esta taxa de fluxo foi escolhida por ser a taxa de fluxo máxima alcançada em uma sala de aula com o ajuda de um sistema de ar condicionado e ventiladores. Portanto, o resultado obtido será a probabilidade de infecção em um caso muito favorável em termos de renovação de ar.
A variabilidade das taxas de fluxo de renovação a que a ventilação natural está sujeita é muito alto e descontrolada.
Verifica-se que as concentrações máximas atingidas, aplicando-se o disposto no espaço RITE para este caso (entre 5 e 6 renovações por hora), são aproximadamente três vezes inferiores aos alcançados pela “ventilação intermitente”. Adicionalmente, as probabilidades de infecção para este novo cenário são 4,8%. Desse modo produziria 1 contágio no final do dia e 4 após 4 dias, em comparação com 0 e 2 que são iriam produzir com a ventilação estipulada pela RITE.
3.2. Bar/Restaurante
Dois casos plausíveis em um bar / restaurante são agora analisados. Um local de 90 m² é assumido de superfície, com um volume total de 270 m³, capacidade para 35 clientes, todos sem máscara, e um garçom, com máscara. O serviço de restaurante é dividido em dois turnos de 2 horas cada, após cada um dos quais a clientela é renovada. No primeiro caso, um dos garçons é considerado contagioso, usando máscara. No segundo caso, considera-se que um dos clientes do primeiro turno está infectado e que não há clientes infectados no segundo turno.
Como entre o primeiro e o segundo turno a clientela é renovada, eles devem considerar separadamente as probabilidades de infecção de cada um, desde o início no primeiro turno o ambiente fica livre de quanta (dose do patógeno em aerossol, o a inalação leva à infecção com uma probabilidade de 63,3%) enquanto que no início do segundo turno há uma concentração de quanta dependente da quantidade de mudanças de ar.
Pode-se concluir quantitativamente que, no caso de clientes de restaurantes comer sem máscara, é fundamental ter sistema de ventilação adequado para garantir que, no caso de um cliente infectado chegar às instalações, a sua contribuição doses infecciosas para o meio ambiente se dissipam o mais rápido possível e reduzem consideravelmente o risco para os clientes do turno posterior.
Observa-se que, como no caso da sala de aula, se a quantidade de renovações de horas definidas pelo RITE, o risco de infecção. Em relação aos contágios e considerando para cada caso os fluxos de ventilação natural, renovações estabelecidas pelo RITE e renovações necessárias para obter uma probabilidade equivalente a 1%, os resultados apresentados são obtidos na próxima tabela:
3.3. CONSULTÓRIO
Propõe-se agora estudar as probabilidades de infecção em um consultório de 260 m² e 780 m² volume, ocupado por 40 trabalhadores (um dos quais é infeccioso) durante um turno intensivo de 7h para diferentes níveis de ventilação. É feita uma distinção entre um caso onde todos os trabalhadores usam uma máscara e outra onde os trabalhadores não usam máscara facial.
Observa-se que as concentrações de equilíbrio para os mesmos níveis de ventilação eles são duas vezes mais altos quando os trabalhadores não usam uma máscara do que quando eles usam (para os casos em que as renovações são publicadas).
Assim, com trabalhadores sem máscara, haveria 4, 2 e 0 infecções, respectivamente para ventilação natural, as renovações estipuladas pela RITE e as necessárias para atingir uma probabilidade de menos de 1%. Por outro lado, se os trabalhadores usassem a máscara produziria 1 e 0 infecções para ventilação natural e renovações estipulado pela RITE (que neste caso equivalem a cerca de 1%).
Agora, a hipótese levantada no estudo em sala de aula é retomada e pressupõe-se que um dos trabalhadores vão para o escritório 4 dias seguidos por causa do contágio. Neste caso, sem a máscara produziria 13, 7 e 2 infecções, respectivamente, para ventilação natural, as renovações estipuladas pelo RITE e aquelas necessárias para atingir uma probabilidade de menos de 1%. Com as máscaras, no entanto, o número de infecções seria reduzido para 4 para ventilação natural e 2 para renovações estipuladas pelo RITE.
4. CONCLUSÕES
O modelo apresentado neste artigo mostra-se uma ferramenta eficaz para a análise e dimensionamento de uma instalação de ventilação mecânica (fluxo de renovação necessária) no contexto atual da pandemia, bem como para avaliar o efeito número relativo de diferentes medidas de prevenção contra o vírus (tempo de exposição, uso máscara, mudanças de ar por hora).
Os resultados confirmam a importância da ventilação adequada e reforçam a argumentos a favor da utilização de sistemas de ventilação mecânica. Especificamente, a ventilação mecânica permite obter taxas de fluxo de renovação maiores do que a ventilação natural (na maioria dos casos), resultando em menos probabilidade de infecção. Além disso, evita a entrada de ruídos e poluentes de fora, favorece a economia de energia e permite maior flexibilidade em relação à ventilação de diferentes espaços. Embora a literatura mostre que, em condições específicas, fluxos de renovação natural, considerados neste artigo como janelas de abertura, podem variar de valores próximos a zero a uma dúzia de renovações por agora, também está claro que você tem controle muito limitado sobre esses termos. Portanto, é enfatizado que a ventilação forçada é especialmente adequada, uma vez que permite que o fluxo de renovação seja controlado com precisão e mantido de acordo com as necessidades, independentemente de fatores externos (quantidade, tamanho e localização de aberturas, gradiente térmico interior-exterior, etc).
O impacto do cumprimento dos requisitos regulamentares (RITE) também foi analisado em termos de às chances de infecção. Nos casos analisados, verifica-se que com as taxas de fluxo de renovação de ar interno definidas pelo RITE podem ser reduzidas para ainda mais três vezes a probabilidade de infecção em comparação com o caso com as janelas abertas.
No caso de querer reduzir ainda mais a probabilidade de infecção, seria necessário dimensionar instalações com uma taxa maior de renovação do ar interior do que aquela indicada pela norma. No entanto, deve-se notar que o RITE não foi concebido em um contexto de pandemia e risco de contágio por aerossóis.
No caso das salas de aula, um caso ao qual foi dedicada atenção significativa da mídia, a ventilação mecânica em conformidade com as taxas de fluxo estabelecidas no RITE atinge, elimina quase completamente a concentração de vírus na sala de aula na hora do recreio (30min) e totalmente na parada de duas horas para almoço. No entanto, apenas abrindo as janelas, não é possível eliminar a concentração de vírus presente no ambiente em nenhum dos casos.