O que é um ventilador

Um ventilador é uma máquina que produz fluxo de gás com duas ou mais pás fixadas a um eixo rotativo. Os ventiladores convertem a energia mecânica rotacional, aplicada aos seus eixos, em aumento de pressão total do gás em movimento. Esta conversão é obtida através da alteração do momento do fluido.
Os códigos de teste de potência da Sociedade Americana de Engenheiros Mecânicos (ASME) limitam a definição de ventilador a máquinas que aumentam a densidade do gás em no máximo 7% à medida que percorre o trajeto desde a aspiração até a descarga. Este é um aumento de aproximadamente 7.620 Pa (762 milímetros de coluna d´água) com base no ar padrão. Para pressões superiores a 7.620 Pa (762 milímetros de coluna d´água), o dispositivo de movimentação do ar é um compressor ou soprador. Existem muitas outras definições, com limites de pressão distintos, sendo que o Brasil não adota, oficialmente, nenhuma especificamente.

Ventiladores para aquecimento, ventilação e ar condicionado, inclusive em sistemas de alta velocidade ou de alta pressão, raramente atingem mais que 2.500 – 3.000 Pa (250 a 300 mm de coluna de água).
Há três componentes principais em um ventilador: o propulsor (também chamado de rotor), o meio de acioná-lo e a carcaça.
Para prever com razoável exatidão o desempenho de um ventilador na instalação, um projetista deve saber:
(a) Como o ventilador foi testado e qual procedimento (norma) foi seguido.

(b) Os efeitos que o sistema de distribuição de ar terá no desempenho do ventilador.
Ventiladores de tipos diferentes, ou ainda ventiladores do mesmo tipo fornecidos por fabricantes diferentes, não irão interagir com o sistema da mesma maneira.

TERMINOLOGIA E DEFINIÇÕES DOS VENTILADORES

Ar Padrão (Sistema Internacional)
Ar seco a 20ºC e 101,325 kPa. Sob essas condições, o ar seco tem uma densidade de massa de 1,204 kg/m3.

Pressão Relativa – Coluna d’água (ca)
É a medida de pressão acima da atmosférica expressa como a altura de uma coluna de água em mm (ou polegadas). A pressão atmosférica ao nível do mar iguala-se a 10.340 mm (407,1 polegadas) de água ou 10m (33,97 pés) de água (Fig 1).

Pressão Estática (Pe)
É a diferença entre a pressão absoluta em um determinado ponto em uma corrente de ar ou câmara pressurizada e a pressão absoluta da atmosfera ambiente, sendo positiva quando a pressão neste ponto estiver acima da pressão ambiente e negativa quando estiver abaixo. Atua igualmente em todas as direções, independente da velocidade do ar e é uma medida da energia potencial disponível em uma corrente de ar.

Pressão de Velocidade/Pressão Dinâmica
É a pressão exigida para acelerar o ar da velocidade zero para alguma velocidade e é proporcional à energia cinética da corrente de ar. A pressão de velocidade apenas será exercida na direção do fluxo de ar e é sempre positiva (Fig 2).

Pd = V 2 para ar padrão
1,3
Onde: Pd = pressão dinâmica em Pa
V = velocidade em m/s

Ou Pd = ( r V2 ) / 2g

Onde: Pd = pressão dinâmica em mmca
V = velocidade em m/s
r = densidade de 1,204 kg/m3
g = acelereção da gravidade de 9,81 m/s2

Pressão Total
Soma algébrica da pressão dinâmica e estática. É uma medida da energia total disponível na corrente de ar. (Fig. 3)

Pressão Total do Ventilador
Diferença algébrica entre a pressão total média na descarga do ventilador e a pressão total média na aspiração do ventilador. É a medida da energia mecânica total acrescentada ao ar ou gás pelo ventilador.
A Fig. 4 mostra como isto é medido.

Vazão (Q)
É a quantidade de ar ou gás, em volume, movimentada pelo ventilador na unidade de tempo, portanto independente da densidade do ar. A unidade usual é m3/h, mas no SI o correto é utilizar m3/s.

Pressão Estática do Ventilador
A pressão estática do ventilador (Fig. 5) é uma grandeza usada na medição do desempenho de ventiladores e não pode ser medida diretamente. É a pressão total do ventilador menos a pressão dinâmica correspondente à velocidade média do ar na descarga do ventilador. Observa-se que não é a diferença entre a pressão estática na descarga e a pressão estática na aspiração, isto é, não é a pressão estática do sistema externo.

Potência Absorvida pelo ventilador (Pabs)
É a potência real que um ventilador requer para mover um dado volume de ar a uma determinada pressão. Pode incluir a potência absorvida por correias em V, acessórios e quaisquer outras exigências de potência além do suprimento de força do ventilador.

Onde: ht = rendimento total do ventilador
Q = vazão em m3/s
Pt = pressão total em Pa
Pabs = potência em kW

Ou

Onde: ht = rendimento total do ventilador
Q = vazão em m3/h
Pt = pressão total em mmca
Pabs = potência em cv

Rendimento Estático (he)
É a potência estática dividida pela potência absorvida do ventilador.

Rendimento Total (ht)
Também chamado de rendimento mecânico, ou simplesmente rendimento. É a razão da saída de potência sobre o suprimento de potência.

Pressão Estática com vazão nula
Condição de operação em que a descarga do ventilador encontra-se completamente fechada, resultando em nenhum fluxo de ar. (Fig. 6).

Condição de descarga livre
Nesta condição de operação a pressão estática através do ventilador é zero, e a vazão é máxima.
(Fig 7).

Intervalo de Aplicação
É o intervalo de vazões e pressões de operação, determinado pelo fabricante, no qual um ventilador irá operar satisfatoriamente. (Fig. 8)

O intervalo de aplicação típica para ventiladores centrífugos com pás voltadas para a frente é de 30% a 80% da vazão máxima, para ventiladores inclinados para trás é de 40% a 85% da vazão máxima e para ventiladores com pás radiais de 35% a 80% da vazão máxima.

Velocidade Periférica (Vp)
É igual a circunferência do rotor multiplicada pela RPM do ventilador e é expressa em m/s. (Fig. 9.)

Onde :
D = diâmetro do rotor em metros
N = velocidade em RPM

Por que seguir a orientações do fabricante?

No mundo tecnológico e industrial, a instalação correta dos equipamentos e o rigoroso seguimento das orientações do fabricante não são apenas recomendações – são um dever. A razão para isso é simples, mas muitas vezes subestimada: a forma como um equipamento é instalado e utilizado pode determinar não apenas sua eficiência e eficácia, mas também sua longevidade e segurança. Vamos explorar mais profundamente por que isso é tão importante.

1. Maximização da Eficiência Operacional

Equipamentos, seja em uma fábrica, escritório ou laboratório, são projetados para operar sob condições específicas. Os fabricantes dedicam anos de pesquisa e desenvolvimento para garantir que seus produtos entreguem o máximo desempenho. Ignorar as especificações e recomendações pode resultar em uma operação precária, onde o equipamento não apenas funciona abaixo de sua capacidade mas também consome mais energia ou recursos do que o necessário.

2. Garantia de Segurança

A segurança é outra consideração crítica. Equipamentos mal instalados podem representar riscos significativos, não apenas para os operadores, mas para todos ao redor. Isso inclui riscos de choques elétricos, falhas mecânicas que podem levar a lesões ou até mesmo incêndios. Seguir as diretrizes do fabricante é essencial para garantir que esses riscos sejam minimizados.

3. Prolongamento da Vida Útil do Equipamento

A instalação correta e a manutenção de acordo com as instruções do fabricante podem prolongar significativamente a vida útil de um equipamento. Isso se deve ao fato de que o uso e cuidado adequados previnem o desgaste prematuro de componentes críticos, evitando falhas e a necessidade de reparos dispendiosos ou substituição precoce.

4. Manutenção da Garantia

Muitos fabricantes estipulam que a garantia de seus produtos só é válida se as instruções de instalação e uso forem rigorosamente seguidas. Isso significa que qualquer instalação inadequada ou uso indevido pode resultar na perda da garantia.

5. Otimização do Suporte Técnico

Quando os equipamentos são instalados e utilizados corretamente, o diagnóstico e a resolução de problemas se tornam mais eficientes. Isso reduz o tempo de inatividade e garante que qualquer interrupção na operação seja minimizada.

Nós sempre indicamos a instalação correta de equipamentos e o cumprimento das orientações do nosso manual para, não apenas o melhor desempenho e eficiência, mas também para a segurança e durabilidade dos nossos ventiladores. Investir tempo para entender e seguir as recomendações contidas no manual ou outro meio de instrução é um investimento na produtividade, segurança e rentabilidade a longo prazo. Assim, você obtém o melhor resultado possível em todas as frentes.

Read More

Como detectar e evitar a umidade em casa: guia prático para evitar problemas de saúde e danos em casa.

Imagem de mofo na parede

É importante saber evitar a umidade em casa e suas consequências. Na S&P temos mais de 70 anos de experiência na melhoria da qualidade do ar interior. A seguir oferecemos nossas melhores dicas práticas para prevenir e solucionar problemas causados ​​pela umidade em casa.

Como identificar a umidade em casa

A umidade em casa pode vir de fora ou ocorrer dentro de casa. Entre as causas mais comuns podemos encontrar vazamento (vazamentos, vazamento de água, etc.), má impermeabilização que faz com que a umidade suba do solo ou subsolo, ou condensação, ou seja, quando há excesso de vapor de água. no ambiente interno da casa.

De qualquer forma, os efeitos são claramente visíveis. Abaixo detalhamos os sinais aos quais prestar atenção:

  • Odores desagradáveis
  • Inchaço e descascamento de tinta, papel de parede ou gesso de paredes e tetos
  • Manchas de mofo
  • Rachaduras ou vazamentos
  • Condensação de água nas janelas
  • Deterioração e podridão de móveis e carpintarias de madeira
  • Corrosão de elementos metálicos
  • Tetos ou paredes molhadas Pisos elevados

Danos da umidade à saúde humana

Viver em um ambiente com umidade relativa muito elevada está diretamente ligado a distúrbios de saúde e doenças, pois cria o ambiente ideal para a proliferação de fungos, ácaros e outros insetos da umidade.

  • Os possíveis danos à saúde humana devido à umidade são:
  • Infecções respiratórias de origem viral ou bacteriana.
  • Asma, devido à inalação de mofo ou esporos de fungos.
  • Rinite alérgica causada por ácaros e seus excrementos.
  • Reações alérgicas ao mofo.
  • Agravamento de patologias reumáticas e ósseas.

Idosos, bebês, crianças e doentes são os mais vulneráveis ​​ao excesso de umidade dentro das residências. A presença de umidade e os insetos que nela proliferam geram desconforto geral nos ocupantes da casa que têm que conviver com maus odores e insalubridades.

Danos causados ​​pela umidade em casa

Além de impactar a saúde humana, a umidade causa danos às residências que, se não forem tratados, podem afetar sua segurança e estabilidade.

Estes são os danos causados ​​pela umidade que podem ocorrer em casa:

  • Redução da capacidade de carga das paredes estruturais, que pode diminuir em até 50%
  • Diminuição da proteção térmica. A condensação degrada o revestimento e a parede perde a sua capacidade isolante.
  • Problemas com instalações elétricas. A água é um ótimo condutor de eletricidade e a umidade pode afetar as tomadas e a fiação, aumentando o risco de curtos-circuitos ou incêndios, além de causar aumento no consumo de energia elétrica.
  • Deterioração de estruturas metálicas, como tubos ou vigas, devido à corrosão causada pela ferrugem.

Evite a umidade com soluções eficazes

A melhor medida é prevenir a umidade antes que surjam problemas. Se tivermos consciência de que temos um nível excessivo de umidade relativa em casa, devemos remediar.

Embora seja difícil evitar fugas do exterior, uma correta impermeabilização e um bom isolamento térmico são a melhor proteção para evitar que, caso existam, afetem o interior da casa.

A atividade diária nas casas (chuveiros, banhos, preparação de alimentos, eletrodomésticos) e o nosso próprio metabolismo (respiração, suor, etc.) geram umidade. Para evitar condensação excessiva, é aconselhável:

  • Ventile a casa todos os dias, permitindo que o ar externo circule por todos os cômodos. Este tipo de ventilação depende do vento ou do gradiente de temperatura estabelecido entre os pontos de entrada e saída. Também permite a entrada de substâncias poluentes no interior devido à ausência de filtragem.
  • Abra as janelas do banheiro e da cozinha quando for gerado muito vapor de água. Se essas salas não tiverem janela, você pode usar um desumidificador.
  • Se pretende ter sempre os níveis de humidade sob controlo e evitar os danos causados ​​pela humidade à saúde das pessoas e a todas as divisões da casa, um sistema de ventilação mecânica é a melhor solução para regular a humidade e eliminar os contaminantes presentes no ar e garantir uma óptima qualidade. em todos os momentos.

Agora você sabe como evitar a umidade em casa e os problemas que isso acarreta. Um sistema de ventilação mecânica mantém a umidade sob controle e contém desperdício de energia.

Read More